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Outline for today

1. Simple gradient explanations 

• Exercise 1: Gradient saliency


• Exercise 2: SmoothGrad


2. Adversarial examples and interpretability 

• Exercise 3: Adversarial attacks


3. Interpreting robust models 

• Exercise 4: Large adversarial attacks for robust models


• Exercise 5: Robust gradients


• Exercise 6: Robust feature visualization



github.com/SIDN-IAP/adversaries 

Lab notebook

https://github.com/SIDN-IAP/adversaries


Dog 95%

Bird 2%

…

Primate 4%

Truck 0%

Input x Pile of linear algebra Predictions

Local explanations

How can we understand per-image model behavior?

Why is this image classified as a dog?

Which pixels are important for this?



Dog 95%

Bird 2%

…

Primate 4%

Truck 0%

Input x Pile of linear algebra Predictions

Local explanations

Sensitivity: How does each pixel affect predictions?

gi(x) = ∇xCi(x; θ)Gradient saliency: 

→ Conceptually: Highlights important pixels



Exercise 1: Try it yourself (5m)

Explore model sensitivity via gradients

→ Basic method: Visualize gradients for different inputs

→ What is the dimension of the gradient?

→ Optional: Does model architecture affect visualization?



What did you see?

Gradient explanations do not look amazing

How can we get rid of all this noise?

Original Image Gradient



Better Gradients

SmoothGrad: average gradients from multiple (nearby) inputs

sg(x) = 1
N

N

∑ g(x + N(0,σ))

[Smilkov et al. 2017]

add noiseaverage

Intuition: “noisy” part of the gradient will cancel out



Exercise 2: SmoothGrad (10m)

sg(x) = 1
N

N

∑ g(x + N(0,σ))Implement SmoothGrad

→ Basic method: Visualize SmoothGrad for different inputs

→ Does visual quality improve over vanilla gradient?

→ Play with number of samples (N) and variance (σ)



Interpretations look much cleaner

What did you see?

But, did we change something fundamental?

Did the “noise” we hide mean something?

Original Image SmoothGrad



Adversarial examples
“pig” (91%)

=

“airliner” (99%)

+0.005x

perturbation

Why is the model so sensitive to the perturbation?

[Biggio et al. 2013; 
Szegedy et al. 2013]

perturbation = arg maxδ∈Δℓ(θ; x + δ, y)



Exercise 3: Adv. Examples (5m)

Fool std. models with imperceptible changes to inputs

→ Method: Gradient descent to increase loss w.r.t. true label 
(Pick an incorrect class, and make model predict it)

→ How far do we need to go from original input?

→ Play with attack parameters (steps, step size, epsilon)

δ′� = arg max||δ||2∈ϵℓ(θ; x + δ, y)Perturbation:



A conceptual model

Useful features (used to classify) Useless features

Unreasonable sensitivity to meaningless features: 
This has nothing to do with normal DNN behavior

adv. examples flip these 
features to fool the model 
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How well will this model do?
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Simple experiment

Adv. ex. 
towards the 
other class Train

Evaluate on 
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dog
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dog
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New training set 
(“mislabelled”)
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dog

Training set 
(cats vs. dogs)

dog
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Classifier

Result: Good accuracy on the original test set 

(e.g., 78% on CIFAR-10 cats vs. dogs)



What is our model missing?

Useless featuresUseful features

?



Useless featuresUseful features (used to classify)

Fixing our conceptual model



Useful features (used to classify) Useless features

Robust features Non-robust features

… …

Adversarial examples flip some useful features

Fixing our conceptual model



Pre-generated Datasets

Adversarial examples & training library

github.com/MadryLab/constructed-datasets

github.com/MadryLab/robustness

Try at home



Similar findings

Take away: Models rely on unintuitive features

Predictive linear directions

[Jetley et al. 2018]

High-frequency components

[Yin et al. 2019]



dog

Back to interpretations

Equally valid classification methods



Model faithful explanations

→ Human-meaningless does not mean useless

Interpretability methods might be  
hiding relevant information

→ Are we improving explanations or hiding things?

→ Better visual quality might have nothing to do with model

[Adebayo et al. 2018]



How do we get better saliency?

Better interpretability 
(human priors)

Gradient of standard models are  
faithful but don’t look great

Can hide too much!

Better models



How do we get better saliency?

Better interpretability 
(human priors)

Gradient of standard models are  
faithful but don’t look great

Can hide too much!

Better models



One idea: Robustness as prior

Robust Training:

min
$
%&,(~* [,-.. /, 0, 1 ]

min
$
%&,(~* [,-./∈1

2344 5, 6 + /, 8 ]

Standard Training:

Set of invariances

Key idea: Force models to ignore non-robust features



Exercise 4: Adv. Examples II (5m)

Imperceptible change images to fool robust models

→ Once again: Gradient descent to increase loss 
(Pick an incorrect class, and make model predict it)

→ How easy is it to change the model prediction?  
(compare to standard models)

→ Again play with attack parameters (steps, step size, epsilon)

δ′� = arg max||δ||2∈ϵℓ(θ; x + δ, y)Perturbation:



What did we see?

For robust model: Harder to change prediction with 
imperceptible (small ε) perturbation



Exercise 5: Robust models (5m)

Changing model predictions: larger perturbations

→ Goal: modify input so that model prediction changes 
• Again, gradient descent to make prediction target class 

• Since small epsilons don’t work, try larger ones

→ What does the modified input look like? 



What did we see?

Large-ε adv. examples for robust models actually modify 
semantically meaningful features in input

Target class: ``Primate``



Exercise 6.1: Robust gradients (5m)

Explore robust model sensitivity via gradients

→ Visualize gradients for different inputs

→ Compare to grad (and SmoothGrad) for standard models



What did we see?

Vanilla gradients look nice, without post-processing

Maybe robust models rely on ``better`` features



Dig deeper

Visualize learned representations

Input

Features

Linear 
classifier

Predicted 
Class

Use gradient descent to maximize neurons



Exercise 6.2: Visualize Features (10m)

Finding inputs that maximize specific features

→ Write loss to max. individual neurons in feature rep.

→ As before: Use gradient descent to find inputs that max. loss

→ Optional: Repeat for standard models

→ Optional: Start optimization from noise instead 

→ Extract feature representation from model 
(What are its dimensions?)



What did we see?
Neuron 200 Neuron 500 Neuron 1444

Top-activating 
test images

Maximizing 
inputs

High-level concepts



Takeaways

Nice-looking explanations might hide things

Models can rely on weird features

Robustness can be a powerful feature prior



“Robust Features”

Based on joint work with
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