Adversaries & Interpretability

SIDN: An IAP Practicum

Shibani Santurkar

Dimitris Tsipras

Outline for today

1. Simple gradient explanations

- Exercise 1: Gradient saliency
- Exercise 2: SmoothGrad

2. Adversarial examples and interpretability

• Exercise 3: Adversarial attacks

3. Interpreting robust models

- Exercise 4: Large adversarial attacks for robust models
- Exercise 5: Robust gradients
- Exercise 6: Robust feature visualization

Lab notebook

github.com/SIDN-IAP/adversaries

Local explanations

How can we understand **per-image** model behavior?

Pile of linear algebra

Predictions

Why is this image classified as a dog?

Which pixels are important for this?

Local explanations

Sensitivity: How does each pixel affect predictions?

Gradient saliency: $g_i(x) = \nabla_x C_i(x; \theta)$

→ Conceptually: Highlights important pixels

Explore model sensitivity via gradients

→ **Basic method:** Visualize gradients for different inputs

→ What is the dimension of the gradient?

→ Optional: Does model architecture affect visualization?

What did you see?

Gradient explanations do not look amazing

Original Image

How can we get rid of all this noise?

Better Gradients

SmoothGrad: average gradients from multiple (nearby) inputs [Smilkov et al. 2017]

Intuition: "noisy" part of the gradient will cancel out

Exercise 2: SmoothGrad (10m)

Implement SmoothGrad

$$sg(x) = \frac{1}{N} \sum_{n=1}^{N} g(x + N(0,\sigma))$$

→ **Basic method:** Visualize SmoothGrad for different inputs

→ Does visual quality improve over vanilla gradient?

 \rightarrow Play with number of samples (N) and variance (σ)

What did you see?

Interpretations look much cleaner

Original Image

SmoothGrad

But, did we change something fundamental?

Did the "noise" we hide mean something?

Adversarial examples

"pig" (91%)

"airliner" (99%)

[Biggio et al. 2013; Szegedy et al. 2013]

perturbation = arg max_{$\delta \in \Delta$} $\ell(\theta; x + \delta, y)$

Why is the model **so sensitive** to the perturbation?

Exercise 3: Adv. Examples (5m)

Fool std. models with imperceptible changes to inputs

Perturbation: $\delta' = \arg \max_{||\delta||_2 \in \epsilon} \ell(\theta; x + \delta, y)$

→ Method: Gradient descent to increase loss w.r.t. true label (Pick an incorrect class, and make model predict it)

 \rightarrow How far do we need to go from original input?

→ Play with attack parameters (steps, step size, epsilon)

A conceptual model

Unreasonable sensitivity to meaningless features: This has nothing to do with normal DNN behavior

Simple experiment

Simple experiment

Simple experiment

What is our model missing?

Fixing our conceptual model

Useful features (used to classify) Useless features

Fixing our conceptual model

Useful features (used to classify) Useless features

Robust features Non-robust features

Adversarial examples flip some useful features

Try at home

Pre-generated Datasets

github.com/MadryLab/constructed-datasets

Adversarial examples & training library

github.com/MadryLab/robustness

Similar findings

Take away: Models rely on unintuitive features

Back to interpretations

Equally valid classification methods

Model faithful explanations

Interpretability methods might be hiding relevant information

- → Human-meaningless does not mean useless
- → Are we improving explanations or hiding things?
- → Better visual quality might have nothing to do with model

[Adebayo et al. 2018]

How do we get better saliency?

Gradient of standard models are faithful but don't look great

Better models

Better interpretability (human priors)

Can hide too much!

How do we get better saliency?

Gradient of standard models are faithful but don't look great

Better models

Better interpretability (human priors)

Can hide too much!

One idea: Robustness as prior

Key idea: Force models to ignore non-robust features

Standard Training:

$$\min_{\theta} \mathbb{E}_{x, y \sim D} \left[loss(\theta, x, y) \right]$$

Robust Training:

$$\min_{\theta} \mathbb{E}_{x, y \sim D} \left[\max_{\delta \in \Delta} loss(\theta, x + \delta, y) \right]$$

$$\sum_{k \in \Delta} Set of invariances$$

Exercise 4: Adv. Examples II (5m)

Imperceptible change images to fool **robust** models

Perturbation: $\delta' = \arg \max_{||\delta||_2 \in \epsilon} \ell(\theta; x + \delta, y)$

→ Once again: Gradient descent to increase loss (Pick an incorrect class, and make model predict it)

→ How easy is it to change the model prediction? (compare to standard models)

→ Again play with attack parameters (steps, step size, epsilon)

What did we see?

For robust model: Harder to change prediction with imperceptible (small ϵ) perturbation

Changing model predictions: larger perturbations

→ Goal: modify input so that model prediction changes

- Again, gradient descent to make prediction target class
- Since small epsilons don't work, try **larger ones**

→ What does the modified input look like?

What did we see?

Target class: ``Primate``

Large-ɛ adv. examples for robust models actually modify semantically meaningful features in input

CO Exercise 6.1: Robust gradients (5m)

Explore **robust** model sensitivity via gradients

→ Visualize gradients for different inputs

→ Compare to grad (and SmoothGrad) for standard models

What did we see?

Vanilla gradients look nice, without **post-processing**

Maybe robust models rely on ``better`` features

Dig deeper

Visualize learned representations

Use gradient descent to maximize neurons

Exercise 6.2: Visualize Features (10m)

Finding inputs that maximize specific features

- → Extract feature representation from model (What are its dimensions?)
- → Write loss to **max. individual neurons** in feature rep.
- → As before: Use gradient descent to find inputs that max. loss
- \rightarrow Optional: Repeat for standard models
- → Optional: Start optimization from noise instead

What did we see?

Maximizing inputs

Neuron 500

Neuron 1444

Top-activating test images

High-level concepts

Takeaways

Nice-looking explanations might hide things

Models can rely on weird features

Robustness can be a powerful feature prior

"Robust Features"

Based on joint work with

Andrew Ilyas

Brandon Tran

Alexander Turner

Aleksander Mądry

